So what we need to do here is find the volume of the bowl in cubic inches and then convert it to gallons. For this purpose is important to recal that:
![1gal=231in^3](https://img.qammunity.org/2023/formulas/mathematics/college/mpo0rh342fflwpelb1pcv8979fhvw2uj7s.png)
So let's find the volume of the bowl in cubic inches first. The volume of a sphere with a radius r is given by:
![V=(4)/(3)\pi\cdot r^3](https://img.qammunity.org/2023/formulas/mathematics/college/ok2w1say3huv6ir2ilu6jg8zp26f7aerlw.png)
In this case, the bowl is a half-sphere so it has half the volume:
![V=((4)/(3)\pi\cdot r^3)/(2)=(2)/(3)\pi\cdot r^3](https://img.qammunity.org/2023/formulas/mathematics/college/njsz9g9nxbv2lj04yn130rp94lvkzgz2cj.png)
The radius is half the diameter so:
![r=(11in)/(2)=5.5in](https://img.qammunity.org/2023/formulas/mathematics/college/geu3e5brafyrc80zsatbas6nvn806ey1al.png)
Then the volume of the bowl in cubic inches is:
![V=(2)/(3)\pi\cdot r^3=(2)/(3)\pi\cdot(5.5in)^3=348.45in^3](https://img.qammunity.org/2023/formulas/mathematics/college/kggxq39k8vq928ydmnwa9whnrqtivvbkte.png)
Now using the convertion factor between gallons and cubic inches and the rule of three we get:
![\begin{gathered} 231in^3------1gal \\ 348.45in^3----x \\ x=(348.45in^3\cdot1gal)/(231in^3)=1.5\text{gal} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nc0ea1bkn8y8eq3vlwcbt9hppyeisnkwdt.png)
And we need to round our answer to the nearest gallon which means that the answer is 2 gallons.