147k views
2 votes
Solve for u, where u is a real number.Square root of -3u + 18 = u

Solve for u, where u is a real number.Square root of -3u + 18 = u-example-1

1 Answer

4 votes

GIVEN

The equation is given to be:


√(-3u+18)=u

SOLUTION

To solve for u.

Square both sides of the equation:


\begin{gathered} -3u+18=u^2 \\ Rearrange \\ u^2+3u-18=0 \end{gathered}

Solve the quadratic equation by factorization:


\begin{gathered} u^2+3u-18=0 \\ Rewrite \\ u^2+6u-3u-18=0 \\ Factor \\ u(u+6)-3(u+6)=0 \\ Factor\text{ }again \\ (u+6)(u-3)=0 \\ \mathrm{Using\:the\:Zero\:Factor\:Principle:\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0 \\ \therefore \\ u+6=0,u=-6 \\ or \\ u-3=0,u=3 \end{gathered}

Check the solutions if it satisfies the equation:


\begin{gathered} u=-6 \\ √(-3(-6)+18)=-6 \\ √(36)=-6 \\ 6=-6\text{ \lparen False\rparen} \\ \\ u=3 \\ √(-3(3)+18)=3 \\ √(9)=3 \\ 3=3\text{ \lparen True\rparen} \end{gathered}

Therefore, the solution to the equation is:


u=3

User Inuyaki
by
9.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories