We know the centripetal acceleration is given by:
![a_c=\omega^2r](https://img.qammunity.org/2023/formulas/physics/college/7zwnls4244b65pird68yxucvnonk8bcbp9.png)
In this case we know that the radius is 7 m and the we want the centripetal acceleration to be 1.85 times that of gravity, then we have:
![\begin{gathered} 1.85g=7\omega^2 \\ \omega^2=(1.85g)/(7) \\ \omega=\sqrt{(1.85g)/(7)} \\ \omega=\sqrt{(1.85(9.8))/(7)} \\ \omega=1.61 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ztxd87n7tgk1728ksh8i6jku8zt5v1bzje.png)
Hence, the angular speed needed is 1.61 rad/s. To determine the revolutions per minute we just need to convert the angular speed we found:
![1.61(rad)/(s)\cdot\frac{1\text{ rev}}{2\pi\text{ rad}}\cdot\frac{60\text{ s}}{1\text{ min}}=15.37(rev)/(min)](https://img.qammunity.org/2023/formulas/physics/college/3qg6xdhmbqfn8sahtrt8isapeon5ulxpkj.png)
Therefore, at 15.37 rpm the riders will be subjected to 1.85 times the acceleration of gravity.