All four interior angles of a square are 90°
Therefore,
The measure of ∠VWT will be

Hence,
∠VWT = 90°
Step2:measure the angle CWV
Sum of angles in a triangle is

Therefore,

Hence,
∠ CWV = 45°
Since the perimeter of the square WVJT
![=12\sqrt[]{2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/587wcsyyxh0zpnjys3222a8yyzo2isob5t.png)
Then
![VW+WT+TJ+JV=12\sqrt[]{2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/sllfif2mx4g1s70a0lb8grlkpdi9p7bfeo.png)
All sides of a square are equal, therefore,

Hence, we will have that
![\begin{gathered} x+x+x+x=12\sqrt[]{2} \\ 4x=12\sqrt[]{2} \\ \text{divide both sides by 4} \\ (4x)/(4)=\frac{12\sqrt[]{2\text{ }}}{4} \\ x=3\sqrt[]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/28p1sn4lpvdhni32l0w6tcp4ee6ee54qoe.png)
![\begin{gathered} CW=y=\text{ADJACENT} \\ CV=y=\text{OPPOSITE} \\ VW=3\sqrt[]{2}=\text{HYPOTENUS} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/a1d1zoao9aw26rfhsxeaw6t7q5hk1icwji.png)
Using the Pythagoras theorem,we will have
![\begin{gathered} \text{hypotenus}^2=\text{opposite}^2+\text{adjacent}^2 \\ (3\sqrt[]{2)}^2=y^2+y^2 \\ 2y^2=9*2 \\ 2y^2=18 \\ \text{diveide both sides by 2} \\ (2y^2)/(2)=(18)/(2) \\ y^2=9 \\ \text{squareroot both sides } \\ y=\sqrt[]{9} \\ y=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mr2ms15ippok5v5eagvfzfcmvimpd1p9q5.png)
Therefore,
Length CW = 3
The perimeter of CBAZ IS


Recall, that all sides of a square are equal,
Hence,

Therefore, perimeter of CBAZ will be

Hence,
Perimeter of CBAZ =24