Let the speed for running be x
Let the speed for cycling be y
Given that the athlete cycles 8 miles/hr faster than he runs, we have
![y\text{ = (x +8) ------ equation 1}](https://img.qammunity.org/2023/formulas/mathematics/college/yjc1bo4uvy5au29d6fkdug3vcnuf7enohd.png)
Every morning, the athlete cycles 4 miles and runs 2.5 miles for a total of 1 hour.
This implies that the total time for cycling and running is 1 hour.
![\begin{gathered} \text{speed}=\frac{\text{distance}}{\text{time}} \\ \Rightarrow time=(dis\tan ce)/(speed) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r7x0mq0nezt9v82u1had0ps60nnguxsmus.png)
Time for cycling:
![t_{\text{cycling}}=\frac{4\text{miles}}{x\text{ miles/hr}}](https://img.qammunity.org/2023/formulas/mathematics/college/s002wp9oxkkh2o1ivgbe028ffmxmj87dfk.png)
Time for running:
![t_(cycling)=\frac{2.5\text{ miles}}{y\text{ miles/hr}}](https://img.qammunity.org/2023/formulas/mathematics/college/d9o1ptl80lnhgu96664kosrc7khv0l1nyj.png)
![\begin{gathered} t_(cycling)+t_(running)=1\text{ hour} \\ (4)/(x)+(2.5)/(y)=1-------\text{ equation 2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xn5lcf278nwxncbv67vf26xv83c9gdl7iy.png)
Substitute equation 1 into equation 2
![\begin{gathered} (4)/(x)+(2.5)/(y)=1 \\ (4)/(x)+(2.5)/((x+8))=1 \\ \text{LCM = x(x+8)} \\ (4(x+8)+2.5x)/(x(x+8))=1 \\ open\text{ the brackets} \\ \frac{4x+32+2.5x_{}}{x^2+8x}=1 \\ (6.5x+32)/(x^2+8x)=1 \\ \text{cross}-mul\text{tiply} \\ 6.5x+32=x^2+8x \\ \text{collect like terms} \\ x^2+8x-6.5x-32=0 \\ x^2+1.5x-32=0 \\ \end{gathered}]()
solving the quadratic equation by factorization, we have
![\begin{gathered} x^2+1.5x-32=0 \\ (x-4.956)(x+6.456)=0 \\ x-4.956=0 \\ x\Rightarrow4.956 \\ x+6.456=0 \\ \Rightarrow x=-6.456 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hlilm8i3iniqfwbq01t58wwt505nxdmn25.png)
since x and y are the speeds of running and cycling, their values cannot be negative,
Thus, x= 4.956 miles/hr
Hence, they run at 4.956 miles/hr