223k views
1 vote
The digit sum of a three-digit number is 10. If we reverse the digits, we get a smaller number. If we divide the original number by this smaller number, we get a quotient of 3 and a remainder of 178. The hundreds digits is four times the units digit. Determine the original number.

User Ken You
by
8.6k points

1 Answer

6 votes

Let the three-digit number be


=xyz

The sum of the three digits will be


x+y+z=10\ldots\ldots\ldots\ldots\ldots\text{.}.(1)

The original digits will be


100x+10y+z\ldots\ldots\ldots\ldots\text{.}(2)

By reversing the digits we will have (smaller number)


100z+10y+x\ldots\ldots\ldots\ldots\text{.}(3)

If a hundred digits is x, then the unit digit will be


\begin{gathered} x=4* z \\ x=4z\ldots\ldots\text{.}\ldots\ldots(4) \end{gathered}

If we dive the original number by the smaller number we will have a quotient of 3 and a remainder of 178, we will have


\begin{gathered} (100x+10y+z)/(100z+10y+x)=3(178)/(100z+10y+x) \\ \text{that is} \\ 100x+10y+z=3(100z+10y+x)+178 \\ 100x+10y+z=300z+30y+3x+178 \\ 100x-3x+10y-30y+z-300z=178 \\ 97x-20y-299z=178\ldots\ldots\ldots(5) \end{gathered}

lets substitute equation (4) in equation (1)


\begin{gathered} x+y+z=10 \\ 4z+y+z=10 \\ 5z+y=10\ldots\ldots\ldots\ldots(6) \end{gathered}

lets substitute equation (4) in equation (5)


\begin{gathered} 97x-20y-299z=178 \\ 97(4z)-20y-299z=178 \\ 388z-20y-299z=178 \\ 388z-299z-20y=178 \\ 89z-20y=178\ldots\ldots\ldots\ldots(7) \end{gathered}

combining equations (6) and (7) and solving simultaneously, we will have


\begin{gathered} 5z+y=10 \\ 89z-20y=178 \\ \text{fom equation (6) we will have that} \\ y=10-5z\ldots\ldots\ldots\text{.}(8) \end{gathered}

Substitute equation (8) in equation 7, we will have


\begin{gathered} 89z-20(10-5z)=178 \\ 89z-200+100z=178 \\ 89z+100z=178+200 \\ 189z=378 \\ (189z)/(189)=(378)/(189) \\ z=2 \end{gathered}

substitute z=2 in equation (8)


\begin{gathered} y=10-5z \\ y=10-5(2) \\ y=10-10 \\ y=0 \end{gathered}

Recall equation (4)


\begin{gathered} x=4z \\ x=4(2) \\ x=8 \end{gathered}

SINCE THE ORIGINAL NUMBER IS


\begin{gathered} =100x+10y+z \\ =100(8)+10(0)+2 \\ =800+0+2 \\ =802 \end{gathered}

Hence,

The original number is = 802

User Oivindth
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories