first we find the slope with this formula
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
where the point(x2,y2) is the rightmost point between the two points
so, for this case (x2,y2)=(4,8) and (x1,y1)=(3,4)
![\begin{gathered} m=(8-4)/(4-3) \\ m=(4)/(1) \\ m=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/smkmm9mfxt8dtxl1aikfqowqwph0hdg1te.png)
and the general equation of a line is
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
we can find b replace the points(x,y) with any point of the line, example (3,4)
![\begin{gathered} (4)=(4)(3)+b \\ 4=12+b \\ b=-8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/njf30hhluw8g469abh86cxfepmk7ly02d2.png)
next, make the equation with b and m
![y=4x-8](https://img.qammunity.org/2023/formulas/mathematics/college/wb5fqvkzeekixc30lv00rk7fgk5t1qqllb.png)
you can replace a point to chek
![\begin{gathered} (8)=4(4)-8 \\ 8=16-8 \\ 8=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bvndxpscdkumm44ajp0umts5bhmrpi5112.png)
so, correct