189k views
4 votes
In many cases the Law of Sines works perfectly well and returns the correct missing values in a non-right triangle. However, in some cases the Law of Sines returns two possible measurements.Consider the diagram below, and assume that m∠A=29∘, AC=13 cm, and, BC=7.2 cm.Using the Law of Sines, determine the value of m∠B. You should notice that there are actually two possible values - list both of them (separated by a comma).m∠B=  °   If we assume the diagram is to scale, which value of m∠B makes more sense? Enter the appropriate value.m∠B= °   Using your answer to part (b), determine the length of AB.¯¯¯¯¯¯¯¯AB=  cm

In many cases the Law of Sines works perfectly well and returns the correct missing-example-1
User Letmecheck
by
4.6k points

1 Answer

4 votes


(\sin B)/(b)=(\sin A)/(a) \\ \\ \sin B=(b \sin A)/(a) \\ \\ \sin B=(13 \sin 29^(\circ))/(7.2) \\ \\ \boxed{m\angle B =\arcsin \left(\frac{65\sin 29^(\circ){36} \right), 180^(\circ)-\arcsin \left((65\sin 29^(\circ))/(36) \right)}

Considering the diagram.
\angle B is shown to be acute, so
\boxed{m\angle B=\arcsin \left((65\sin 29^(\circ))/(36) \right)}.

Angles in a triangle add to 180°, so
m\angle C= 151^(\circ)-\arcsin \left((65\sin 29^(\circ))/(36) \right).

Using the law of cosines,


AB=\sqrt{13^2 + 7.2^2-2(13)(7.2)\cos \left(\arcsin \left((65\sin 29^(\circ))/(36) \right) \right)} \\ \\ \boxed{AB=\sqrt{220.84-187.2\cos \left(\arcsin \left((65\sin 29^(\circ))/(36) \right) \right)}}

User Fijter
by
4.3k points