ANSWER
![The\text{ number of atoms of Ag in AgNO}_3\text{ is 2.983}*\text{ 10}^(23)\text{ atoms}](https://img.qammunity.org/2023/formulas/chemistry/college/ovz6h6xk8ggezp7s0met8fwlvp73iwuvea.png)
Step-by-step explanation
Given information
The mass of silver nitrate (AgNO3) = 84.15 grams
Avogadro's constant = 6.022 x 10^23
To find the number of atoms of AgNO3, follow the steps below
Step 1: Find the number of moles using the below formula
![\text{ Mole = }\frac{\text{ mass}}{molar\text{ mass}}](https://img.qammunity.org/2023/formulas/chemistry/college/ex3jc7ynsqobg9ei8r94zfs6q121u290sz.png)
Recall, that the molar mass of AgNO3 is 169.87 g/mol
Step 2: Substitute the given data into the formula in step 1
![\begin{gathered} \text{ Mole = }(84.15)/(169.87) \\ \text{ Mole = 0.4954 mol} \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/b5foiz1zddhak03bkj1l46tbflr6ytc5s0.png)
Hence, the number of moles of AgNO3 is 0.4954 mole
Step 3: Find the number of atoms of AgNO3 using the formula below
![\begin{gathered} \text{ mole = }\frac{\text{ number of atoms}}{Avogadro^{^(\prime)}s\text{ number}} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/fejb0e5jqxi9hhsvl4s57xf9716gpdcwbq.png)
Let the number of atoms be x
![\begin{gathered} \text{ 0.4954 = }(x)/(6.022*10^(23)) \\ \text{ Cross multiply} \\ \text{ x = 0.4954 }*\text{ 6.022}*10^(23) \\ \text{ x = 2.983 }*\text{ 10}^(23)\text{ atoms} \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/jxnl20mvq3v3o34bpysnsyclhmfsve80oc.png)
Since we have 1 atom of Ag in AgNO3, hence, the number of atoms of Ag in AgNO3 is calculated below
![\begin{gathered} \text{ Number of atoms of Ag = 1 }*\text{ 2.983 }*\text{ 10}^(23) \\ \text{ Number of atoms of Ag = 2.983 }*\text{ 10}^(23)\text{ atoms} \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/uq6mapfpdfbgj91h2ejo1oxa496jjuo6i1.png)