given the following data
x P(X=x) xP(x) (x - U)^2 . P(x)
4 1/5 4/5 (4 - 32/5)^2 . 1/5
6 2/5 12/5 (6 - 32/5)^2 . 2/5
8 2/5 16/5 (8 - 32/5)^2 . 2/5
U = 4/5 + 12/5 + 16/5 = 32/5
so,
= (4 - 6.4)^2 . 0.2 + (6 - 6.4)^2 . 0.4 + (8 - 6.4)^2 . 0.4
= (-2.4)^2 . 0.2 + (-0.4)^2 . 0.4 + (1.6)^2 . 0.4
= 5.76 x 0.2 + 0.16 x 0.4 + 2.56 x 0.4
= 1.152 + 0.064 + 1.024
= 2.24
therefore,
Standard Deviation (S.D)
S.D = square root of 2.24
S.D = 1.497
S.D = 1.50 (round to two decimal places)