Endpoints of the diameter: (-6, -12) and (4, -10)
1. Find the coordinates of the center: The center is the midpoint of the diameter.
Use the midpoint formula to find the center of the circle:


Center of the circle (-1,-11)
2. Find the radius of the circle: as the radius is the distance from the center of the cirlce to any point on its circumference, use the formula for distance between two points to find the distance between (-1,-11) to (-6,-12):
![d=\sqrt[]{(x_2-_{}x_1)^2+(y_2-y_1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/snxoa7s5v8xfu7ao0afuev1hqmtki69bpr.png)
![\begin{gathered} r=\sqrt[]{(-1-(-6))^2+(-11-(-12))^2} \\ \\ r=\sqrt[]{5^2+1^2} \\ \\ r=\sqrt[]{25+1} \\ \\ r=\sqrt[]{26} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/52beq99h65plvxvueb02ihdnwj5tmj6oxf.png)
3. Use center (h,k) and radius (r) to write the equation of the circle:

![\begin{gathered} (x-(-1))^2+(y-(-11))^2=(\sqrt[]{26})^2 \\ \\ (x+2)^2+(y+11)^2=26 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nvcl6l91sqn5r3zb2sj93fr5to7y9cmaxo.png)
Then, the equation of the given circle is:
