Endpoints of the diameter: (-6, -12) and (4, -10)
1. Find the coordinates of the center: The center is the midpoint of the diameter.
Use the midpoint formula to find the center of the circle:
![((x_1+x_2)/(2),(y_1+y_2)/(2))](https://img.qammunity.org/2023/formulas/mathematics/college/b6ezm84zxxqzwlktnyn6xpt1axi8omhbm3.png)
![\begin{gathered} ((-6+4)/(2),(-12-10)/(2)) \\ \\ (-(2)/(2),-(22)/(2)) \\ \\ (-1,-11) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8gu6hua44cvyjabg4qzavoxux6mq3o0lfz.png)
Center of the circle (-1,-11)
2. Find the radius of the circle: as the radius is the distance from the center of the cirlce to any point on its circumference, use the formula for distance between two points to find the distance between (-1,-11) to (-6,-12):
![d=\sqrt[]{(x_2-_{}x_1)^2+(y_2-y_1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/snxoa7s5v8xfu7ao0afuev1hqmtki69bpr.png)
![\begin{gathered} r=\sqrt[]{(-1-(-6))^2+(-11-(-12))^2} \\ \\ r=\sqrt[]{5^2+1^2} \\ \\ r=\sqrt[]{25+1} \\ \\ r=\sqrt[]{26} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/52beq99h65plvxvueb02ihdnwj5tmj6oxf.png)
3. Use center (h,k) and radius (r) to write the equation of the circle:
![(x-h)^2+(y-k)^2=r^2](https://img.qammunity.org/2023/formulas/mathematics/college/5s77z5lwu6jnvb5vkwanu2jvhq5sh1qkc3.png)
![\begin{gathered} (x-(-1))^2+(y-(-11))^2=(\sqrt[]{26})^2 \\ \\ (x+2)^2+(y+11)^2=26 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nvcl6l91sqn5r3zb2sj93fr5to7y9cmaxo.png)
Then, the equation of the given circle is:
![(x+2)^2+(y+11)^2=26](https://img.qammunity.org/2023/formulas/mathematics/college/7nmh3mum0tmerly9m8545dgb6324rj2cj4.png)