136k views
0 votes
Picture attached, solve inequality - need help with interval chart especially

Picture attached, solve inequality - need help with interval chart especially-example-1

1 Answer

3 votes

Given:

The expression is:


(x^2-5x)/(2x^2+4x)\leq(x-8)/(x+6)

Find-:

Solve the expression

Explanation-:

The expression is:


(x^2-5x)/(2x^2+4x)\leq(x-8)/(x+6)

The value of "x" is:


\begin{gathered} (x^2-5x)/(2(x^2+2x))\leq(-(-x+8))/(x+6) \\ \\ \\ (-x^3+13x^2+2x)/(x(x+2)(x+6))\leq0 \end{gathered}

So, the "x" is:

The factor is:


\begin{gathered} (-x(x^2-13x-2))/(x(x+2)(x+6))\leq0 \\ \\ \\ (-x(x-(13+√(177))/(2))(x-(13-√(177))/(2)))/(x(x+2)(x+6))\leq0 \end{gathered}
\begin{gathered} (x(x-(13+√(177))/(2))(x-(13-√(177))/(2)))/(x(x+2)(x+6))\ge0 \\ \\ \\ ((x-(13+√(177))/(2))(x-(13-√(177))/(2)))/((x+2)(x+6))\ge0 \end{gathered}

The "x" in interval is:

[tex]\begin{gathered} \frac{(x-\frac{13+\sqrt{177}}{2})(x-\frac{13-\sqrt{177}}{2})}{(x+2)(x+6)}\ge0 \\ \\ x<-6\text{ or }-2Is the value for "x"
User Berlinguyinca
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories