Given
The function
![f(x)=-2\cos (x)/(4)+2](https://img.qammunity.org/2023/formulas/mathematics/college/v703chgaphj9vv78a0sgzyi46i2rsleexz.png)
To find the time at which the pendulum is 4 meters away from its starting point.
Now,
Let x be the time at which the pendulum moves.
Let f(x) be the distance of the pendulum from its starting point at time x.
Then,
![f(x)=4(\text{Given)}](https://img.qammunity.org/2023/formulas/mathematics/college/2ldt3366n7iroq8lhl83se7pisf081zmva.png)
Therefore,
![\begin{gathered} 4=-2\cos (x)/(4)+2 \\ -2\cos (x)/(4)=4-2 \\ -2\cos (x)/(4)=2 \\ -\cos (x)/(4)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zuly8kfs9db9hjuh219hi17csfrwbg74bv.png)
Since
![\sin (n\pi-\theta)=-\cos \theta](https://img.qammunity.org/2023/formulas/mathematics/college/nsopyy4m07bvcedufyjjuhbkw4k0z7e70h.png)
Then,
![\begin{gathered} \sin (n\pi-(x)/(4))=1 \\ n\pi-(x)/(4)=-(\pi)/(2) \\ n\pi-(x)/(4)=-(\pi)/(2) \\ (x)/(4)=n\pi+(\pi)/(2) \\ x=4n\pi+\pi \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4abdm3jn7s6v2nafj9iw5rb4i4zud8rrwx.png)
Hence, the answer is option c).