We will ahve the following:
Forces on x:
![\sum ^{}_{}F_x=0=\sigma-n_1\colon\sigma=n_1](https://img.qammunity.org/2023/formulas/physics/college/30q3lz7zgsyvliiw5b0hda96ncfkpe3mib.png)
Forces on y:
![\sum ^{}_{}F_y=0=n_2-200N-750N\colon n_2=950N](https://img.qammunity.org/2023/formulas/physics/college/g2ekbd64uiujxxht9ur2ppgldqbi590fli.png)
Since it is a stable system we will have:
![n_1=\mu n_1](https://img.qammunity.org/2023/formulas/physics/college/l5zsh3ztch2tt6vcvx7k31gvnfntezw2us.png)
Now, we will determine the torque at the bottom of the ladder:
![\sum ^{}_{}\tau_{\text{bottom}}=0-(200N)(3m)\cos (56)](https://img.qammunity.org/2023/formulas/physics/college/yewfpgaqo8f69pxgyvygwjaluqzr9wfvpt.png)
Also:
![-(750N)(d)\cos (56)](https://img.qammunity.org/2023/formulas/physics/college/fppd0dyto2dc20498qdi857i7xa6mud8pe.png)
&
![+(n_1)(5m)\sin (56)](https://img.qammunity.org/2023/formulas/physics/college/4q426d2f8g14dugg2wns9k93sngas8wtk1.png)
Finally:
![0=-600\cos (56)-d\cdot750\cos (56)+(285)(5)\sin (56)\Rightarrow-d\cdot750\sin (56)=600\cos (56)-(285)(5)\sin (56)](https://img.qammunity.org/2023/formulas/physics/college/x2ol1co1kw0bz7h39ytfg5dytzk1t96yee.png)
![\Rightarrow d=((285)(5)\sin (56)-600\cos (56))/(750\cos (56))\Rightarrow d=2.01686584](https://img.qammunity.org/2023/formulas/physics/college/9987nrapvwjbqkvnzk8glierxcsrdk9nq2.png)
![\Rightarrow d\approx2.02](https://img.qammunity.org/2023/formulas/physics/college/bpx6iq5ak9ccvjzi1r3dpnucre93o38t44.png)
So, the distance along the ladded that a 750N person could climb in the ladder would be approximately 2.02 meters.