Let x and x + 1 be two consecutive integer numbers. Then, the sentences in this question can be written as:
x(x+1) = 11 + x + x+1
Now, we can develop this equation to find:
x(x+1) = 11 + x + x+1
x² + x = 12 + 2x
x² + x - 2x - 12 = 12 + 2x - 2x - 12
x² - x - 12 = 0
Remember we can solve the equation in the form ax² + bx + c = 0 by using the following formula:
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
In this case, we have:
a = 1
b = -1
c = -12
Then, x is given by:
![\begin{gathered} x=\frac{-(-1)\pm\sqrt[]{(-1)^2-4\cdot1\cdot(-12)}}{2\cdot1} \\ \\ x=\frac{1\pm\sqrt[]{1+48}}{2}=\frac{1\pm\sqrt[]{49}}{2}=(1\pm7)/(2) \\ \\ x_1=(8)/(2)=4\text{ }\Rightarrow x_1+1=5 \\ \\ x_2=-(6)/(2)=-3\text{ }\Rightarrow x_1+1=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pf1rra86p3p73r40vz75ytkscwjqolv05h.png)
Therefore, the integers can be:
4, 5 or -3, -2