We have the following rectangular prism,:
Given that we know the value of the volume, we can find the height using the following formula:
![\begin{gathered} V=a\cdot b\cdot h \\ V=100x^8y^(12)z^2 \\ a=4x^2y^2 \\ b=5x^8y^7z^(-2) \\ \Rightarrow100x^{8^{}}y^(12)z^2=(4x^2y^2)(5x^8y^7z^(-2))\cdot h \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z0b0ldwdqppu2psdn64m2sv2tofcwz8n11.png)
Now we multiply both factors using the rules of exponents to get the following:
![\begin{gathered} 100x^8y^(12)z^2=(4x^2y^2)(5x^8y^7z^(-2))\cdot h=(20x^(8+2)y^(2+7)z^(-2))\cdot h \\ \Rightarrow100x^{8^{}}y^(12)z^2=(20x^(10)y^9z^(-2))\cdot h \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/folwi974rsbkofbg8n6k76tov9x2rcm8qd.png)
finally, we solve for h and again we use the rules of exponents on the resulting division:
![\begin{gathered} h=(100x^8y^(12)z^2)/(20x^(10)y^9z^(-2))=5x^(8-10)y^(12-9)z^(2-(-2)) \\ h=5x^(-2)y^3z^4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t8x6pfuph5p7a0w2lwcgeory7v8db4yvhn.png)
therefore, the height of the prism is h=5x^(-2)y^3z^4