Solution:
Given:
The sketch shows the description of the surveyor
The angle of elevation is given in degrees, minutes, and seconds.
Converting this to degrees only,
![\begin{gathered} 69^050^(\prime)56^(\doubleprime)=69+(50)/(60)+(56)/(3600)=69.849^0 \\ \\ \text{Also,} \\ 79^051^(\prime)51^(\doubleprime)=79+(51)/(60)+(51)/(3600)=79.864^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/893ccur2ofc9czdy1cwv7hnn5452ywdos7.png)
Representing the sketch as a line diagram,
This line diagram can further be represented by two right triangles;
Using the trigonometric identity of tangent to get the height (h) in both right triangles;
![\tan \theta=\frac{\text{opposite}}{adjacent}](https://img.qammunity.org/2023/formulas/mathematics/college/u5m5plai2b6pastekv5gysrmlklxf0iex3.png)
Hence, from triangle A,
![\begin{gathered} \tan 69.849=(h)/(689+x) \\ 2.7251=(h)/(689+x) \\ \text{Cross multiplying,} \\ h=2.7251(689+x) \\ h=1877.5939+2.7251x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/96tams5hy7pn3m0vh4c555xwokly71iitz.png)
Also, from triangle B,
![\begin{gathered} \tan 79.864=(h)/(x) \\ 5.5936=(h)/(x) \\ \text{Cross multiplying,} \\ h=5.5936x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fac3nph9lpriebhrusxo8v0o7rlgpjnxmb.png)
Hence, equating the height (h) gotten in both triangles,
![\begin{gathered} 1877.5939+2.7251x=5.5936x \\ \text{Collecting the like terms,} \\ 1877.5939=5.5936x-2.7251x \\ 1877.5939=2.8685x \\ \text{Dividing both sides by 2.8685,} \\ (1877.5939)/(2.8685)=x \\ x=654.556ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p689pb502zbf533gh8zkusoonkl2ya5iml.png)
To get the height of the mountain; recall from triangle B,
![\begin{gathered} h=5.5936x \\ h=5.5936*654.556 \\ h=3661.32 \\ \\ To\text{ the nearest whole foot,} \\ h=3661ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uiyjok2be9anedqiae64upbkamsmgmgz2b.png)
Therefore, the height of the mountain to the nearest whole foot is 3661 foot