EXPLANATION
Given the equation 10m^2 - 11m + 4 = 0
We can see that this is a quadratic equation so we need to apply the quadratic formula as shown as follows:
![m_(1,2)=\frac{-(-11)\pm\sqrt[]{(-11)^2-4\cdot10\cdot4}}{2\cdot10}](https://img.qammunity.org/2023/formulas/mathematics/college/d432odgr2505jbxtsi5x6swy18ohsbhr8d.png)
Simplifying:
![m_(1,2)=\frac{11\pm\sqrt[]{121-160}}{20}](https://img.qammunity.org/2023/formulas/mathematics/college/brunp756su38a9orjwov2hv8hehlbxabw6.png)
![m_(1,2)=\frac{11\pm\sqrt[]{-39}}{20}](https://img.qammunity.org/2023/formulas/mathematics/college/c83ciysu3cxlezh2h7sy5hixvjlhw2zduw.png)
Separate the solutions:
![m_1=\frac{11+\sqrt[]{39}i}{20}](https://img.qammunity.org/2023/formulas/mathematics/college/jou3yu8gjra4hlk9wl50lnsfh1wu299j7v.png)
![m_2=\frac{11-\sqrt[]{39}i}{20}](https://img.qammunity.org/2023/formulas/mathematics/college/qssrwtdj4agf8o957ifbp2vzhcv8mz53q0.png)
Rewritting the expressions:
![m_1=(11)/(20)+\frac{\sqrt[]{39}i}{20}](https://img.qammunity.org/2023/formulas/mathematics/college/mo9abl22m2t5qnlxhsso6sccobb4msaanp.png)
![m_2=(11)/(20)-\frac{\sqrt[]{39}i}{20}](https://img.qammunity.org/2023/formulas/mathematics/college/y5sis5jm37gll142x80oo1ucrsyyvis9l7.png)
The solutions to the quadratic equations are:
![m_{}=(11)/(20)+i\frac{\sqrt[]{39}}{20}](https://img.qammunity.org/2023/formulas/mathematics/college/tohi4yuhgub1e8rwsr2p0mqxkvxcxobr2g.png)
![m=(11)/(20)-i\frac{\sqrt[]{39}}{20}](https://img.qammunity.org/2023/formulas/mathematics/college/ogig6qxnwzemjnu4h4z64gv0rxoo2sj5fi.png)