Hello there. To solve this question, we'll have to remember some properties about changing bases in logarithms.
Given the logarithm:
![\log_3\left((1)/(4)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/lgc7myoimarwzs5e4uou60ohmxmp8pzydu.png)
We first use the properties:
![\begin{gathered} \log_c\left((a)/(b)\right)=\log_c(a)-\log_c(b)\text{ and } \\ \\ \log_c(1)=0,0In this case, we get:<p></p>[tex]\begin{gathered} \log_3\left((1)/(4)\right)=\log_3(1)-\log_3(4)=0-\log_3(4) \\ \\ \Rightarrow-\log_3(4) \end{gathered}]()
Now, we use the change of basis formula:
![\log_c(a)=(\log_d(a))/(\log_d(c))](https://img.qammunity.org/2023/formulas/mathematics/college/dw07u6qsgvzzyv3an84o48cm2sp8ojarlv.png)
When changing for a basis d greater than zero and not equal to 1.
With this, we have that
![-\log_3(4)=-(\log_(10)(4))/(\log_(10)(3))](https://img.qammunity.org/2023/formulas/mathematics/college/z7p79ijr915tnxf8bzm0cq486nvvlselzx.png)
Applying the property:
![\log_c(a^b)=b\cdot\log_c(a)](https://img.qammunity.org/2023/formulas/mathematics/college/mn3qrvhjrnjigzle17e42081gd4azbo68k.png)
and knowing that 4 = 2², we get
![-(2\log_(10)(2))/(\log_(10)(3))](https://img.qammunity.org/2023/formulas/mathematics/college/5gs58a6xaedxtdjy5dqqhh0as1v2skyace.png)
We chose base 10 log because we know the following values for:
![\begin{gathered} \log_(10)(2)\approx0.3010 \\ \\ \log_(10)(3)\approx0.477 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7jif42z844xglw6wvg8qlq0xwc7yloh3cc.png)
Hence the approximation for what we want is
![\log_3\left((1)/(4)\right)\approx-(2\cdot0.3010)/(0.477)=-1.262](https://img.qammunity.org/2023/formulas/mathematics/college/anzc5tw696orzszhczeqga0hw5wubpfw56.png)
This is the answer we're looking for.