Given the following speed in radar below,
![61,65,67,68,68,70,77,80,87,88,103,105](https://img.qammunity.org/2023/formulas/mathematics/college/l9u85e7kqok2wkaqgwaeq3el3eo3jzq4wa.png)
To find the first quartile, Q₁ below, where N = 12
![Q_1=((N+1)/(4))^(th)_{}=((13)/(4))^(th)=3.25^(th)](https://img.qammunity.org/2023/formulas/mathematics/college/fka1mrwu8yghy0l5u1e42s7irvwmjjrilc.png)
Hence, Q₁ = 68
To find the second quartile, Q₂, where N = 12,
![\begin{gathered} ^{}Q_2=\lbrack2((N+1)/(4))\rbrack^(th)=\lbrack2((12+1)/(4))\rbrack^(th)=\lbrack2((13)/(4))\rbrack^(th)=\lbrack(26)/(4)\rbrack^(th)=6.5^(th) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fg651ykqc0eqq2b614zcawgs7twm7gh3aq.png)
Since the median lies between the 6th and 7th data, hence Q₂ is,
![Q_2=(70+77)/(2)=(147)/(2)=73.5](https://img.qammunity.org/2023/formulas/mathematics/college/tklcdftod69ks3udplz4ofixpkpynlo2v6.png)
Hence, Q₂ = 73.5
To find the third quartile, Q₃, where N = 12,
![Q_3=\lbrack3((N+1)/(4))\rbrack^(th)=\lbrack3*3.25\rbrack^(th)=9.75^(th)](https://img.qammunity.org/2023/formulas/mathematics/college/5lp9i2lmuknr8k527i4xsi3pbiwj15ecij.png)
Hence, Q₃ = 88
To find the Interquartile range (IQR),
![\begin{gathered} IQR=Q_3-Q_1=88-68=20 \\ \text{IQR = 20} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/an6n166nix113m1zylz6haoe387bf4qfgb.png)
Hence, IQR = 20