116k views
5 votes
For the following matrix A, find A^-1 if it exists.

For the following matrix A, find A^-1 if it exists.-example-1
User Sdornan
by
7.5k points

1 Answer

4 votes

Given the matrix A :


A=\begin{bmatrix}{0} & {0} & {1} \\ {1} & {0} & {0} \\ {0} & {1} & {0}\end{bmatrix}

The determinant of the matrix will be =


1\cdot(1\cdot1-0)=1

Now, we will find the transpose of the matrix :


A^T=\begin{bmatrix}{0} & {1} & {0} \\ {0} & {0} & {1} \\ {1} & {0} & {0}\end{bmatrix}

Then, find the elements of the inverse :


\text{adj(A)}=\begin{bmatrix}{0} & {1} & {0} \\ {0} & {0} & {1} \\ {1} & {0} & {0}\end{bmatrix}

So, the inverse will be :


A^(-1)=(adj(A))/(\det (A))=\begin{bmatrix}{0} & {1} & {0} \\ {0} & {0} & {1} \\ {1} & {0} & {0}\end{bmatrix}

User Arun Singh
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories