218k views
0 votes
I need this math question it be solved thank you :)

I need this math question it be solved thank you :)-example-1

1 Answer

0 votes

The given system of equations is:


\begin{gathered} 5x-4y=-10\text{ Eq.(1)} \\ 3x+2y=16\text{ Eq.(2)} \end{gathered}

Start by solving for x in equation 1:


\begin{gathered} 5x-4y=-10 \\ 5x=-10+4y \\ x=(-10+4y)/(5) \\ x=-(10)/(5)+(4y)/(5) \\ x=-2+(4y)/(5)\text{ Eq.(3)} \end{gathered}

Now, replace this into equation 2:


\begin{gathered} 3(-2+(4y)/(5))+2y=16 \\ \text{Apply the distributive property} \\ 3\cdot(-2)+3\cdot(4y)/(5)+2y=16 \\ -6+(12y)/(5)+2y=16 \\ (12y)/(5)+2y=16+6 \\ (12y)/(5)+2y=22 \\ (12y+5\cdot2y)/(5)=22 \\ (12y+10y)/(5)=22 \\ (22y)/(5)=22 \\ 22y=22\cdot5 \\ y=(22\cdot5)/(22) \\ \text{Simplify} \\ y=5 \end{gathered}

Now, replace the y-value into Eq.(3) and find x:


\begin{gathered} x=-2+(4\cdot5)/(5) \\ \text{Simplify} \\ x=-2+4 \\ x=2 \end{gathered}

Now, let's check these values into the system of equations:


\begin{gathered} 5\cdot2-4\cdot5=-10\text{ Eq.(1)} \\ 10-20=-10 \\ -10=-10\text{ O.K.} \\ 3\cdot2+2\cdot5=16\text{ Eq.(2)} \\ 6+10=16 \\ 16=16\text{ O.K.} \end{gathered}

Answer: x=2 and y=5

User Mihails Butorins
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories