7.7k views
0 votes
How do you solve this quadratic equation to find the complex solutions 2x^2+5=6x

1 Answer

3 votes


The\text{ solutions: }x=\frac{\text{3+{\imaginaryI}}}{2}\text{{\text{ or}} }\frac{\text{3-{\imaginaryI}}}{2}

Step-by-step explanation:
\begin{gathered} Given: \\ 2x^2+5=6x \end{gathered}

We will rewrite the equation and solve for x:


\begin{gathered} subtract\text{ 6x from both sides:} \\ 2x^2\text{ + 5 - 6x = 6x - 6x} \\ 2x^2\text{ + 5 - 6x = 0} \\ 2x^2\text{ - 6x + 5 = 0} \end{gathered}

Solve for x using quadratic function:


\begin{gathered} $$x\text{ = }\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}$$ \\ 2x^2\text{ - 6x + 5 = 0} \\ \text{a = 2, b = -6, c = 5} \\ x\text{ = }(-(-6)\pm√((-6)^2-4(2)(5)))/(2*2) \end{gathered}
\begin{gathered} x=\frac{\text{-\lparen-6\rparen\pm}\sqrt{\text{\lparen-6\rparen}^2\text{ {\text{{}}}- 4\lparen2\rparen\lparen5\rparen}}}{\text{2*2}} \\ x\text{ = }(6\pm√(-4))/(4)\text{ } \\ Since\text{ we can't find square root of a negative number, we will use complex number} \\ In\text{ complex number, }i^2\text{ = -1} \\ substitute\text{ for -1 in the formula:} \\ \text{ x = }(6\pm√(i^2*4))/(4) \\ \text{ x=}(6\pm i√(4))/(4)=(6\pm2i)/(4) \end{gathered}
\begin{gathered} x\text{ = }(6\pm2\imaginaryI)/(4)=\text{ }(2(3\pm\imaginaryI))/(2(2))\text{ }(2\text{ was factorized out since it is common to denominator and numerator}) \\ x\text{ = }((3\pm\imaginaryI))/(2)\text{ }(2\text{ cancels in the numerator and denominator}) \\ x\text{ = }(3\pm\imaginaryI)/(2) \\ x\text{ = }\frac{3+\text{ }\mathrm{i}}{2}\text{ or }\frac{3-\text{ }\mathrm{i}}{2}\text{ } \end{gathered}
The\text{ solutions: }x=\frac{\text{3+{\imaginaryI}}}{2}\text{{\text{ or}} }\frac{\text{3-{\imaginaryI}}}{2}

User Ppatierno
by
3.8k points