Given data:
* The x-component of force is,
![F_x=2\text{ N}](https://img.qammunity.org/2023/formulas/physics/college/vkcrgjm45munpl2xput99j8fk9vbj7evom.png)
* The y-component of force is,
![F_y=5\text{ N}](https://img.qammunity.org/2023/formulas/physics/college/dam4zbasomp2d5ksl81mxn2itjjh6f5snn.png)
* The mass of the particle is 3 Kg.
* The time taken by the particle is 10 seconds.
Solution:
According to the Newton's second law,
![F=ma](https://img.qammunity.org/2023/formulas/physics/high-school/f29csqfwijobd1j24f6y6vv1aba7x8qmg1.png)
where a is the acceleration of the body,
For x-direction motion of the particle,
![\begin{gathered} F_x=ma_x \\ a_x=(F_x)/(m) \\ a_x=(2)/(3) \\ a_x=0.67ms^(-2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/uj6anjikn9tye3nuiw2vf7vgyttpw4ykc2.png)
By the kinematics equation, the x-component of the displacement of particle is,
![\begin{gathered} d_x=(1)/(2)a_xt^2 \\ d_x=(1)/(2)*0.67*(10)^2 \\ d_x=33.5\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/4p5w26rnbquo10f5enag9xrc84qu2awiyh.png)
Similarly, for the motion of partcile along the y-direction is,
![\begin{gathered} F_y=ma_y \\ a_y=(F_y)/(m) \\ a_y=(5)/(3) \\ a_y=1.67ms^(-2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/hpezusq0qdtx0wuqpuzbmdmrcvq23owbuj.png)
Thus, by the kinematics equation, the displacement of partcile along the y-direction is,
![\begin{gathered} d_y=(1)/(2)a_yt^2 \\ d_y=(1)/(2)*1.67*(10)^2 \\ d_y=83.5\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/wcu6wti4js6uu777kms1w1c5d05i43qynf.png)
Thus, the net distance traveled by the particle is,
![\begin{gathered} d=\sqrt[]{d^2_x+d^2_y} \\ d=\sqrt[]{33.5^2+83.5^2} \\ d=89.96\text{ m} \\ d\approx90\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/rx85gds7urt5r87lm3hnb2jlv7rn4ge5w2.png)
Hence, the total distance traveled by the particle is 90 m.