Given a right angle triangle with equal legs and the hypotenuse as 5 meters, we can proceed to draw a diagram to help illustrate the solution.
Let the value of the legs be x
We can find the value of x using the Pythagoras theorem.
![\begin{gathered} 5^2=x^2+x^2 \\ 2x^2=25 \\ \text{Divide both sides by 2} \\ x^2=(25)/(2) \\ \text{square root both sides} \\ x=\sqrt[]{(25)/(2)} \\ x=\frac{5}{\sqrt[]{2}} \\ we\text{ find the conjugate of the radical} \\ \frac{5}{\sqrt[]{2}}*\frac{\sqrt[]{2}}{\sqrt[]{2}} \\ \therefore x=\frac{5\sqrt[]{2}}{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y9um367jpk1ohbi18h09zlajpk7qvy1jsb.png)
Therefore, the length of the leg is
![x=\frac{5\sqrt[]{2}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/gsjob6y3fvo8i4fcgocu8ih771rnqsxfj5.png)