We have the expression:
![(25^x)/(5^x).](https://img.qammunity.org/2023/formulas/mathematics/college/w5euzqbc1p889wwwdo3ugfbd3wgb0xcmzi.png)
Using the distributive property for exponents, we write the expression as:
![((5\cdot5)^x)/(5^x)=(5^x\cdot5^x)/(5^x)=5^x.](https://img.qammunity.org/2023/formulas/mathematics/college/e8b4wxpakay3enjcfgv2q2b2efy5qfpf9f.png)
A)
![(5^(x)*5^(x))/(5^(x))](https://img.qammunity.org/2023/formulas/mathematics/college/5k5l6p6f99aq4cgixiadb3qouepy3omtn2.png)
From the form above we see that this expression is equivalent.
B)
![5^x](https://img.qammunity.org/2023/formulas/mathematics/college/vdop6b4ct7qpnfc0husp6l92yhu1chlzvo.png)
From the form above we see that this expression is equivalent.
C) We have the expression:
![(25-5)^x.](https://img.qammunity.org/2023/formulas/mathematics/college/wcdwlgk1t0pgdbpetv22fcj9kwf87fpgt3.png)
Simplifying this expression, we have:
s