Answer:
![t\approx1.14secs](https://img.qammunity.org/2023/formulas/mathematics/college/2xhumkoa509lvxqfn0mh0b237uo3eicu9l.png)
Explanations:
Givenhthe equation ofthe height rcoveredby the ball expressed as:
![h(t)=-16t^2+5t+15](https://img.qammunity.org/2023/formulas/mathematics/college/2at1nl55sjocdxwviayxi7k19uzb9astut.png)
The height of the ball on the ground is zero that is h(t) = 0. Substitute into the equation to determine the required time.
![\begin{gathered} -16t^2+5t+15=0 \\ 16t^2-5t-15=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n9xh82wxq2o5qplsu07q728rx64t1k2aox.png)
Factorise the esult using the quadratic frormula
![\begin{gathered} t=(-b\pm√(b^2-4ac))/(2a) \\ t=(-(-5)\pm√((-5)^2-4(16)(-15)))/(2(16)) \\ t=(5\pm√(25+960))/(32) \\ t=(5\pm√(985))/(32) \\ t=(5+31.39)/(32) \\ t=(36.39)/(32) \\ t=1.14seconds \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w8kv7azkl6mc5c6b9sk34ze3uu64na9e7o.png)
Hence it will take the ball approximately 1.14seconds to hit the ground