29.2k views
3 votes
How do prove this identity? I’m so lost on trig identities…

How do prove this identity? I’m so lost on trig identities…-example-1

1 Answer

1 vote

Given:


(2\tan x)/(1+\tan^2x)=\sin 2x

Take the left-hand side of the equation,


\begin{gathered} \text{LHS}=(2\tan x)/(1+\tan^2x) \\ \text{Use the identity: 1+tan}^2x=sex^2x \\ =(2\tan x)/(\sec^2x) \\ =(2(\sin x)/(\cos x))/((1)/(\cos^2x))\ldots.\ldots\text{.. Since tanx=}(sinx)/(\cos x),\text{secx}=(1)/(\cos x) \\ =2(\sin x)/(\cos x)*\cos ^2x \\ =2\sin x*\cos x \\ =\sin 2x\ldots\ldots...\ldots\text{ Since }\sin 2\text{x=2}\sin x\cdot\cos x \\ =\text{ Left hand side} \end{gathered}

Hence, it is proved that,


(2\tan x)/(1+\tan^2x)=\sin 2x

User Shashank Shah
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories