GIVEN:
We are given a regular pyramid with the following dimensions;
![\begin{gathered} Base=6 \\ \\ Height=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kvjb4m808vmxgde9ezd3rybapckp24o07h.png)
Required;
To calculate the lateral area.
Step-by-step solution;
To begin, we first take note that what we have is a regular pyramid with a hexagonal base. That is, the base has 6 sides.
Also, it is called a regular pyramid which means all sides of the base are equal.
We are given the formula for the lateral area as follows;
![\begin{gathered} For\text{ }a\text{ }hexagonal\text{ }pyramid: \\ \\ Lateral\text{ }Area=3a\sqrt{h^2+(3a^2)/(4)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e2jz15nm5wnkf6nh55xju8fr86smjxd4fh.png)
Where you have;
![\begin{gathered} a=base \\ \\ h=height \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6ry5nmsbpmp5d3vb5mabrc392ugnxzsvw7.png)
We now have;
![Lateral\text{ }Area=3(6)\sqrt{8^2+(3(6)^2)/(4)}](https://img.qammunity.org/2023/formulas/mathematics/college/p7qpjti5du6wjgi8ezrlexlzbcprl8kipr.png)
Now we can simplify;
![\begin{gathered} Lateral\text{ }Area=18\sqrt{64+(3(36))/(4)} \\ \\ Lateral\text{ }Area=18√(64+27) \\ \\ Lateral\text{ }Area=18√(91) \\ \\ Lateral\text{ }Area=171.709056255 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/whl08dm3lnx71ep8zv2fiv04ngy8r73rwm.png)
We can however write the "exact answer" as follows;
ANSWER:
![L.A=18√(91)\text{ }units^2](https://img.qammunity.org/2023/formulas/mathematics/college/qrcazlf9vvfiffmg7a91mvrkuextkpti8q.png)