We are given that the Titanic hit an iceberg half of its mass. To determine the velocity of the iceberg after the collision we have to do a balance of momentum:
![m_Tv_(1T)+m_Iv_(1I)=m_Tv_(2T)+m_Iv_(2I)](https://img.qammunity.org/2023/formulas/physics/college/ntzitzz7migazw3xglr17jwk38d2gq4qm5.png)
Where:
![\begin{gathered} m_T=\text{ mass of the titanic} \\ v_(1T)=\text{ initial velocity of the titanic} \\ m_I=\text{ mass of the Iceberg} \\ v_(1I)=\text{ initial velocity of the iceberg} \\ v_(2T)=\text{ final velocity of the titanic} \\ v_(2I)=\text{ final velocity of the iceberg} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/6tg4qbmn9o2xmyy3hhdhh7x6mwldkik1xo.png)
Now, since the iceberg is initially at rest, we have:
![v_(1I)=0](https://img.qammunity.org/2023/formulas/physics/college/xlqbvlckpg7ezx09b6uko0uujl8ut11hpc.png)
Substituting in the balance of momentum we get:
![\begin{gathered} m_Tv_(1T)+m_I(0)_{}=m_Tv_(2T)+m_Iv_(2I) \\ m_Tv_(1T)=m_Tv_(2T)+m_Iv_(2I) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/olrfpgw5mhza4beiu4o32s2utlgd9ens81.png)
We are given that the mass of the iceberg is half of the mass of the Titanic, therefore, we have:
![m_I=(m_T)/(2)](https://img.qammunity.org/2023/formulas/physics/college/2lx4nr8b948fkzamjgurtqlqb9k88zsvpw.png)
Substituting in the balance of momentum:
![m_Tv_(1T)=m_Tv_(2T)+(m_T)/(2)v_(2I)](https://img.qammunity.org/2023/formulas/physics/college/5ew8l4n6vz0nvf4li3lv622j7fagszydah.png)
Now, we can cancel out the mass of the Titanic:
![v_(1T)=v_(2T)+(1)/(2)v_(2I)](https://img.qammunity.org/2023/formulas/physics/college/pdtt23j3f76agy178zfdz3b0eghjcito4a.png)
Now we solve for the final velocity of the iceberg. We subtract the final velocity of the Titanic from both sides:
![v_(1T)-v_(2T)=(1)/(2)v_(2I)](https://img.qammunity.org/2023/formulas/physics/college/blvasjiqle3fvrevugafeniq39l1uj42wb.png)
Now we multiply both sides by 2:
![2(v_(1T)-v_(2T))=v_(2I)](https://img.qammunity.org/2023/formulas/physics/college/f3cwi7kej6bpzf71w3y84kj9tz7rqsr1si.png)
Substituting the values we get:
![2(11.3(m)/(s)-3.1(m)/(s))=v_(2I)](https://img.qammunity.org/2023/formulas/physics/college/4dytbetm75rljoh0p06xv39t8c6sjhpl3x.png)
Solving the operations we get:
![16.4(m)/(s)=v_(2I)](https://img.qammunity.org/2023/formulas/physics/college/tnzz3nxakei4g2gu9avth9zddc9mtze5n8.png)
Therefore, the final velocity of the iceberg is 16.4 meters per second.