Answer:
AM = 36, AB = 72
MN = 9, AC = 18
Step-by-step explanation:
Solving the equations of the previous problem, we find that x = 9 and y = 6.
Now we put these values in the expressions for the side lengths and find the length measures.
![AM=5x-9](https://img.qammunity.org/2023/formulas/mathematics/college/snc20ltm618kme766robyb7ng6qhzauejj.png)
putting in x = 9 gives
![\begin{gathered} AM=5(9)-9 \\ AM=36 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fy23c6wk9ifmjcdf5p31v7fpzi5h1ikctz.png)
For AB we have
![\begin{gathered} AB=(5x-9)+(2x+18) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lw1kvxfiafybfek2bo0312rz91i0nmq3t9.png)
putting in x = 9 gives
![\begin{gathered} AB=(5(9)-9)+(2(9)+18) \\ AB=72 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qng59x6lm2akmgn3oom7q67zluk2q10zqz.png)
For MN we have
![MN=y+3](https://img.qammunity.org/2023/formulas/mathematics/college/ms3h08dkytc3ttj69sit5z7t1bunbz7qt2.png)
putting in y = 6 gives
![\begin{gathered} MN=6+3 \\ MN=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7f6oqag87udchbb3j6fsvtu8eq7sjt2prg.png)
which is our answer!
For AC we have
![AC=7y-24](https://img.qammunity.org/2023/formulas/mathematics/college/ksupurxsjy7ntt8trmurun7ypvcvr2tokk.png)
putting in y = 6 gives
![\begin{gathered} AC=7\cdot6-24 \\ AC=18 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fk7ptudpjfaepw2xxotkdzlga0z2cpghxt.png)
Hence, to summarise
AM = 36, AB = 72
MN = 9, AC = 18