Answer:
Area of the garden:
![\begin{equation*} 398.93\text{ ft}^2 \end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/9ajnty1nwfm04yiztusprsqjtsfv6sa8is.png)
Step-by-step explanation:
Given the below parameters;
Length of the rectangle(l) = 23 ft
Width of the rectangle(w) = 14 ft
Value of pi = 3.14
Since the width of the rectangle is 14 ft, so the diameter(d) of the semicircle is also 14 ft.
The radius(r) of the semicircle will now be;
![r=(d)/(2)=(14)/(2)=7\text{ ft}](https://img.qammunity.org/2023/formulas/mathematics/college/a16wv8zlpsxmof0tcgtj3i2fphbt3scau6.png)
Let's now go ahead and determine the area of the semicircle using the below formula;
![A_(sc)=(\pi r^2)/(2)=(3.14*\left(7\right)^2)/(2)=(3.14*49)/(2)=(153.86)/(2)=76.93\text{ ft}^2](https://img.qammunity.org/2023/formulas/mathematics/college/zb93ey24otb9b1qdep5h9i5nqvdqzwfxzw.png)
Let's also determine the area of the rectangle;
![A_r=l*w=23*14=322\text{ ft}^2](https://img.qammunity.org/2023/formulas/mathematics/college/pgfzi0gpmj0ma0ydn1gbha40bb9d3mumnq.png)
We can now determine the area of the garden by adding the area of the semicircle and that of the rectangle together;
![\begin{gathered} Area\text{ of the garden = Area of semi circle + Area of rectangle } \\ =76.93+322 \\ =398.93\text{ ft}^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eacg3b2awhbd8w1uu8y7w75jb3s1qsyhqj.png)
Therefore, the area of the garden is 398.93 ft^2