219k views
1 vote
An acute angle, θ, is in a right triangle such that cosine of theta equals 15 over 17 period What is the value of csc θ? 17 over 8 17 over 15 8 over 15 8 over 17

An acute angle, θ, is in a right triangle such that cosine of theta equals 15 over-example-1
User Max Doumit
by
4.7k points

1 Answer

4 votes

By definition we have


\csc \theta=(1)/(\sin \theta)

But, remember that


\sin ^2\theta+\cos ^2\theta=1

Then we can write sin in function of cos


\sin ^2\theta+\cos ^2\theta=1\Rightarrow\sin \theta=\sqrt[]{1-\cos ^2\theta}

Using that we can write csc in function of cos as well


\csc \theta=\frac{1}{\sqrt[]{1-\cos ^2\theta}}

We now the value of cos θ here, the let's just put it and do the simplification


\begin{gathered} \csc \theta=\frac{1}{\sqrt[]{1-\cos^2\theta}} \\ \\ \csc \theta=\frac{1}{\sqrt[]{1-(15^2)/(17^2)}} \\ \\ \csc \theta=\frac{1}{\sqrt[]{1-\frac{225^{}}{289}}} \\ \\ \csc \theta=\frac{1}{\sqrt[]{\frac{289-225^{}}{289}}} \\ \\ \csc \theta=\frac{1}{\sqrt[]{\frac{64^{}}{289}}} \\ \\ \csc \theta=\frac{1}{\frac{8^{}}{17}} \\ \\ \csc \theta=(17)/(8) \end{gathered}

The correct answer is


\csc \theta=(17)/(8)

User Pete Thorne
by
5.2k points