a)y=4x-28
Step-by-step explanationthe equation of a line can be written as follows
![\begin{gathered} y=mx+b \\ where\text{ m is the slope} \\ and\text{ b is the y-intercept} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e09gijreicswm49vyp7syn2g8w6x0q7hm7.png)
Step 1
a) find the slope of the given line
![\begin{gathered} y=4x+2\Rightarrow y=mx+b \\ hence \\ slope_1=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3y1dh0tgi67od3r7naygy2vc926ibth8w8.png)
b)now, 2 lines are parallel it the slope is the same in both lines, so
the slope of the line we are looking for must be 4 as well
![\begin{gathered} slope_1=slope_2 \\ 4=slope_2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nnczn45kfx46xsnumubgztp8u51fhgaxkh.png)
so
Slope = 4
Step 2
finally, use the slope -point formula to find the equation of the line
![\begin{gathered} slope-point\text{ formula} \\ y-y_1=m(x-x_1) \\ where\text{ m is the slope} \\ \text{ \lparen x}_1,y_1)\text{ is a point of the lines} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2zqpng0bz1uynm2rh1agghx5i5emy3ppxj.png)
a) let
![\begin{gathered} point\text{ =\lparen8,4\rparen} \\ slope=\text{ 4} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w0jt4mk0nfr5vg7v96559lj5q5x3whhao1.png)
b) now, replace and isolate y
![\begin{gathered} y-y_(1)=m(x-x_(1)) \\ y-(4)=4(x-8) \\ y-4=4x-32 \\ add\text{ 4 in both sides} \\ y-4+4=4x-32+4 \\ y=4x-28 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7qoo78pmlboobmuygiykii6zx2ykj54c5e.png)
therefore, the answer is
a)y=4x-28
I hope this helps you