The quadratic equation models the revenue with respect to the unit price is:

a) To find the prices when the revenue is zero, first zero the equation:

Using the quadratic equation, where "p" is the independent variable, normally represented with the letter "x"
![p=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/ztk5cq9tcps469wfzj94x3doiiob80uqw7.png)
Where
a is the coefficient of the quadratic term, in this case, a= -2
b is the coefficient of the x-term, in this case, b= 4000
c is the constant of the quadratic equation, in this case, c= 0
![\begin{gathered} p=\frac{-4000\pm\sqrt[]{(4000)^2-4\cdot(-2)\cdot0}}{2(-2)} \\ p=\frac{-4000\pm\sqrt[]{16000000-0}}{-4} \\ p=\frac{-4000\pm\sqrt[]{16000000}}{-4} \\ p=(-4000\pm4000)/(-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ss7afb369k7hr7scywbp3cs2zcpxhta7e8.png)
Solve the sum and difference separately:
-Sum:

-Difference

At the unit prices 0 and 2000, the revenue will be zero.
b) You have to find the values of p for which the revenue is equal to 400000, to do so, equal the quadratic equation to the given revenue value:

Zero the equation

Use the quadratic equation to determine the prices, use:
a=-2
b=4000
c=-400000
![\begin{gathered} p=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ p=\frac{-4000\pm\sqrt[]{(4000)^2-4\cdot(-2)(-400000)}}{2\cdot(-2)} \\ p=\frac{-4000\pm\sqrt[]{16000000-3200000}}{-4} \\ p=\frac{-4000\pm\sqrt[]{12800000}}{-4} \\ p=(-4000\pm3577.708764)/(-4) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y1jph8kq68yw4ed04tjsvfaqn2eowuydip.png)
Sum:

Difference:

Between the prices $105.57 and $1894.43 the revenue will be greater than $400,000