ANSWER:
![\begin{equation*} (f\circ g)(x)=(3)/(x+1) \end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/hstl6e0zoa27ovbgljgsefybjeodujg7ng.png)
![Domain:(-\infty,-1)\cup(-1,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/svy8nqgk5e36tlva2vmx14uz4s9oakmxxc.png)
Step-by-step explanation:
Given:
![\begin{gathered} f(x)=(1)/(x) \\ g(x)=(x+1)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gvzvh3gy5r4a1mxy6lqo3m8qyumy7525g2.png)
To find (f o g)(x), we have to substitute x in f(x) with (x + 1)/3 and simplify as seen below;
![\begin{gathered} (f\circ g)(x)=f(g(x))=(1)/((x+1)/(3))=1/(x+1)/(3)=1*(3)/(x+1)=(3)/(x+1) \\ \therefore(f\circ g)(x)=(3)/(x+1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lym6c5ngdgwtqvns2qxuu1fbz5s3yc18l0.png)
Recall that the domain of a function is the set of input values for which a function is defined.
So to determine the domain of the stated function, we have to equate the denominator to zero and solve for x as seen below;
![\begin{gathered} x+1=0 \\ x=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/iapg923b1717isnmyp4vumhq62jguhlye8.png)
We can see that for the given function to be defined, x must not be equal to -1, so we can go ahead and write the domain of the function in interval notation as;
![Domain:(-\infty,-1)\cup(-1,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/svy8nqgk5e36tlva2vmx14uz4s9oakmxxc.png)