The sides of the given triangle are 15,20 and 25.
![\begin{gathered} \text{Perimeter of the triangle =15+20+25} \\ =60 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cnbxrk7ha8n35wz0wnsmyfs9og19nb2dwl.png)
Find the area.
![\begin{gathered} A\text{rea of the triangle =}(1)/(2)\cdot15\cdot20 \\ =150 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/km5oy36oi3826xzn7z5umkz2edl2td0uro.png)
The length of the sides of the dilated triangle are 3 times the sides of the original triange.
So, the sides of the dilated triangle are:
![\begin{gathered} 15\cdot3=45 \\ 20\cdot3=60 \\ 25\cdot3=75 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4hcoxui0ewli9l9ffc9usxj5k0aka4es32.png)
So, the perimeter of the dilated triangle is the sum of 45, 60 and 75.
![\begin{gathered} \text{Perimeter of the dilated triangle=45+60+75} \\ =180 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cu09aj3006grayjdure2rbsze26p6pes1w.png)
Now, find the area of the dilated triangle.
![\begin{gathered} \text{Area of the dilated triangle =}(1)/(2)\cdot45\cdot60 \\ =1350 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kkba2vkas4tg4toqxd1d06j3fou5ki0w8p.png)