We need to substitute each point in the given equation and see if they fulfill the equality.
Case A)
By substituting point (7,5), we have
![\begin{gathered} 5-5=6(x-7) \\ \text{which gives} \\ 0=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b7imflfaxzdkgceo4qpqexqtl60t3g4u6p.png)
then, the point (7,5) belong to the line.
Case B).
By substituting point (5,7), we get
![\begin{gathered} 7-5=6(5-7) \\ \text{which gives} \\ 2=6(-2) \\ 2=-12\text{ } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tz9s6p8owyomk21yffvbse6a7av9rba38a.png)
which is an absurd result. Then, point (5,7) does not belongs to the line
Case C)
By substituting point (-7,-5), we obtain
![\begin{gathered} -5-5=6(-7-7) \\ or \\ -10=6(-14) \\ -10=-84 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dk0h0yrbcu78fmd3ovnkhhdnghxvdrpa0e.png)
again, this is an absurd result, so this point does not belongs to the line.
Case D).
By replacing point (-5,-7), we have
![\begin{gathered} -7-5=6(-5-7) \\ -12=6(-12) \\ -12=-72 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y7n1y1184s9ktiwf6u68t4ugsw2kbe7wau.png)
then, this point does not belongs to the line.
Therefore, the answer is option A.