SOLUTION:
Case: Area of a regular hexagon
Method: The method to be used will split the regular hexagon into 6 equal equilateral triangles.
Each equilateral triangle will be
The area of each equilateral triangle is given by the formula:
![\begin{gathered} \text{Area,} \\ A=(1)/(2)bc*\sin A \\ A=\text{ }(1)/(2)(10)(10)*\sin 60 \\ A=\text{ }(1)/(2)(10)(10)*\frac{\sqrt[]{3}}{2} \\ A=\text{ }25\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bnxv7ryt3qtsq7pv1fg0yxxphevdfxxpaz.png)
Therefore the total area of 6 similar equilateral triangles will be:
![\begin{gathered} \text{Total area,} \\ T_a=\text{ 6}*25\sqrt[]{3} \\ T_a=\text{ 1}50\sqrt[]{3} \\ T_a=259.8\text{ (nearest tenth)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8w7thor2zgv1w3llb3kf5c4cf138rv1v23.png)
Final answer:
The area of the hexagon to the nearest tenth is 259.8 sq cm