The general exponential regression equation is
![y=ae^(bx)](https://img.qammunity.org/2023/formulas/mathematics/college/1v6ohspfwwbckhqfsu88pd343ca0ct5v4a.png)
We get (0,847) and (1, 972) points from the table.
Substitute x=0 and y=847, we get
![847=ae^(b(0))](https://img.qammunity.org/2023/formulas/mathematics/college/j7nqklfavlvjk9wfwjp8n0sfihwu918xo7.png)
![847=a](https://img.qammunity.org/2023/formulas/mathematics/college/sijme84kw7a14b95kdph1a5busdbgwep7b.png)
Substitute a=847 in the general equation, we get
![y=847e^(bx)](https://img.qammunity.org/2023/formulas/mathematics/college/b3shcybk2o6cyp9aqc805x9naiudymuct5.png)
Substitute x=1 and y=972, we get
![972=847e^(b(1))](https://img.qammunity.org/2023/formulas/mathematics/college/3ivv18qaxh9vd0g9e8hwcweihmvvlfzqb8.png)
![e^b=(972)/(847)=1.148](https://img.qammunity.org/2023/formulas/mathematics/college/su8wu50slbecn54o1as0rihx8aze1i247w.png)
![\text{ Substitute a=847 and }e^b=1.148\text{ in general equation, we get}](https://img.qammunity.org/2023/formulas/mathematics/college/dtfqyd1jkhdsdphkds4twpamfs8t0bwj7g.png)
![y=847(1.148)^x](https://img.qammunity.org/2023/formulas/mathematics/college/cswds4tenmpygo8vozvfyny1ynjksmnkx7.png)
Hence the exponential regression equation is
![y=847(1.15)^x](https://img.qammunity.org/2023/formulas/mathematics/college/y5nfwost0nh1n9krjnb4hcus13jl2b0z3x.png)
Substitute x=8 to find the number of bacteria after 8 hours.
![y=847(1.15)^8](https://img.qammunity.org/2023/formulas/mathematics/college/o1bq77jlxgdwa532zknumn8or9u71k39g8.png)
![y=2590.99](https://img.qammunity.org/2023/formulas/mathematics/college/csb0p63a9a78lauoud4f0uxuuxifyisb2w.png)
Round off,
![y=2591](https://img.qammunity.org/2023/formulas/mathematics/college/wacb40e43eb8019oawsje74pp9me1n6ys0.png)
The number of bacteria after 8 hours is 2591 bacterias.