The given parameters in the question are
![\begin{gathered} Deposit=A=P.V=\text{ \$650} \\ \text{rate}=R=7.1\text{ \%} \\ \text{time =t=2 years} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q1xpktzp9ueiegswim7u44opqh90fjnobx.png)
The formula to calculate the future value is given below as
![\begin{gathered} \text{future value=present value +simple interest} \\ F\mathrm{}V=P\mathrm{}V+I \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k7ky2lrhilwikp6h15pksahohunhmyv3re.png)
The formula for simple interest (I) is
![\text{Interest (I)=}\frac{\text{ P}* R* T}{100}](https://img.qammunity.org/2023/formulas/mathematics/college/51bdguivhzsqaaw9q76ktsmaitm9fs72lr.png)
Substituting the values, we will have the interest to be
![\begin{gathered} I=(650*7.1*2)/(100) \\ I=(9230)/(100) \\ I=\text{ \$92.3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q4i5f2a3xxn2noi780demr1xhyw9bzxjvp.png)
To calculate the future value,
![\begin{gathered} F\mathrm{}V=P\mathrm{}V+I \\ F\mathrm{}V=\text{ \$650 + \$92.3} \\ F\mathrm{}V=\text{ \$742.30} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ivpcoumnwgw58h310gq7c83w9ah5t8r2kt.png)
Hence,
The future value of the investment after two years will be = $742.30