184k views
1 vote
Solve the triangle.a=9 , c= 6 , B= 99.7 degrees

Solve the triangle.a=9 , c= 6 , B= 99.7 degrees-example-1
User Mrzli
by
7.9k points

1 Answer

6 votes

Given the triangle:

We can use the law of cosines to find the length of side b:


\begin{gathered} b^2=a^2+c^2-2\cdot a\cdot c\cdot\cos B \\ b^2=9^2+6^2-2\cdot9\cdot6\cdot\cos99.7\degree \\ \therefore b=11.6 \end{gathered}

Using this value, we can calculate the measure of the angles A and C using the law of sines. For the angle C:


\begin{gathered} (\sin C)/(c)=(\sin B)/(b) \\ \\ (\sin C)/(6)=(\sin99.7\degree)/(11.6) \\ \\ C=\arcsin((6\sin99.7\degree)/(11.6)) \\ \\ \therefore C=30.7\degree \end{gathered}

And for angle A:


\begin{gathered} (\sin A)/(a)=(\sin B)/(b) \\ \\ (\sin A)/(9)=(\sin99.7\degree)/(11.6) \\ \\ A=\arcsin((9\sin99.7\degree)/(11.6)) \\ \\ \therefore A=49.9\degree \end{gathered}

Solve the triangle.a=9 , c= 6 , B= 99.7 degrees-example-1
User Kedwin
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories