SOLUTION
Let the length of the rectangle be L, the width be w and the perimeter P
The length of a rectangle is two feet more than five times the width, this means
![\begin{gathered} L=2+(5* w) \\ L=2+5w \\ P=52 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ax8egghrg7e3gxxoilvbzg5i3rqqbapui9.png)
Also perimeter P of a rectangle is given as
![P=2(L+w)](https://img.qammunity.org/2023/formulas/mathematics/college/ap4vpo8k3105jrzi6uvoxler7v8vxfeny1.png)
This becomes
![\begin{gathered} P=2(L+w) \\ 52=2(L+w) \\ 52=2L+2w \\ \text{Now }L=2+5w \\ \text{substituting we have } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gl4tllj39thf9iy6084zkqex19xrq23mka.png)
That
![\begin{gathered} 52=2L+2w \\ 52=2(2+5w)+2w \\ 52=4+10w+2w \\ \text{collecting like terms } \\ 52-4=10w+2w \\ 48=12w \\ w=(48)/(12) \\ w=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fafcly0lxd18trvu1c3ajk8r5vqcapgd5r.png)
Hence the width is 4
The length becomes
![\begin{gathered} L=2+5w \\ L=2+5*4 \\ L=2+20 \\ L=22 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hc9qz71af83zo2ivcd2p12xrza30fx3gcj.png)
And the length is 22
Hence the dimensions of the rectangle is 22 by 4