Given the functions:
![\begin{gathered} f(x)=-√(5-x) \\ \\ and \\ \\ g(x)=4-x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/75n5vsfvvohhy45itlao0lwooz07nlyxz1.png)
Let's find the domain of (g - f)(x) in interval notation.
To solve for (g - f)(x), let's solve for g(x) - f(x).
Subtract f(x) from g(x).
We have:
![\begin{gathered} (g-f)(x)=g(x)-f(x)=(4-x)-(-√(5-x)) \\ \\ (g-f)(x)=(4-x)-(-√(5-x)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/38of18f7w1vwtqma35keveh041bu297lq7.png)
Solving further:
Apply distributive property and remove the parentheses.
![(g-f)(x)=4-x+√(5-x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/rgfdkyxa006790z2vhaw7uss1vwdu612ph.png)
Now, let's find the domain.
The domain is the set of possible values of x which makes the function defined.
To find the domain set the values in the radicand greater or equal to zero and solve for x.
![\begin{gathered} 5-x\ge0 \\ \\ \text{ Subtract 5 from both sides:} \\ -5+5-x\ge0-5 \\ \\ -x\ge-5 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/u01jgvaq8gypcurt5ueyw6pa6hxan5naku.png)
Divide both sides by -1:
![\begin{gathered} (-x)/(-1)\ge(-5)/(-1) \\ \\ x\leq5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ue947kpow0rbhgayasqoggy8a6l7fsr5mx.png)
Therefore, the domain is:
x ≤ 5
In interval notation, the domain is:
![(-\infty,5]](https://img.qammunity.org/2023/formulas/mathematics/high-school/o7eqtm613lysu49ieqjg1uob38h8o89i37.png)
ANSWER:
![(-\infty,5]](https://img.qammunity.org/2023/formulas/mathematics/high-school/o7eqtm613lysu49ieqjg1uob38h8o89i37.png)