Answer:
![466.29cm^2](https://img.qammunity.org/2023/formulas/mathematics/college/uqx2ibu7gy47xr07ai07xqz5a67wsk6bgy.png)
Step-by-step explanation: We have to find the surface area of the cylinder, the formula used is as follows:
![A=2(\pi r^2)+(2\pi rh)\rightarrow(1)](https://img.qammunity.org/2023/formulas/mathematics/college/acsmi7jspwtqcpxic5fp9t012jje9cq3zu.png)
The height of the cylinder is:
![\begin{gathered} (h)/(2)=\sqrt{((15)/(2))^2-(4.5)^2} \\ \\ h=2\sqrt{((15)/(2))^2-(4.5)^2} \\ \\ h=2√(56.25-20.25) \\ \\ h=2√(36) \\ \\ h=12cm \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gsn2n2snxvd4w94574vwlbuaxyg8qcskv0.png)
Therefore the surface area is calculated using the formula (1) as follows:
![\begin{gathered} \begin{equation*} A=2(\pi r^2)+(2\pi rh) \end{equation*} \\ \\ A=2(\pi(4.5cm)^2)+2\pi(4.5cm)(12cm) \\ \\ A=127.17cm^2+339.12cm^2 \\ \\ A=466.29cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kc2q7do275gw0jinzrgvzd7a67gjtrxkor.png)
The surface area of the cylinder is 466.29 square centimeters.