The total payment (in dollars) can be modeled by the linear equation:
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
Where y is the total payment, x is the number of miles, m is the charge per mile and b is the fixed charge. From the problem, we identify:
![\begin{gathered} m=2 \\ b=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/faky3u8h5d05sv5yjusy8pp0cm0e07so2g.png)
Then:
![y=2x+3](https://img.qammunity.org/2023/formulas/mathematics/high-school/30zzxuyb9lxdanrb1oj8xocd58463jib7b.png)
Now, if a tourist pays $33 (y = 33), using the equation to find the number of miles:
![33=2x+3](https://img.qammunity.org/2023/formulas/mathematics/college/3kf5dfg79emg4i7m7ox4hbm8k75kumaxht.png)
Solving this equation for x:
![\begin{gathered} 2x=30 \\ \\ \therefore x=15\text{ miles} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p3g50oglmhg3qw6ucusiapw7goxs3f368k.png)