We can solve this problem by means of the reference angle approach, which consistes in locate the reference angle (the one that makes the arms of the given angle with the x-axis), construct the right triangle and apply the definitions of the trigonometric functions. Then, lets draw a picture of our problem:
Then, the trigonometric function value of angle theta will be the same as the trigonometric value of the reference angle alpha, for instance,
![\csc \theta=\frac{\sqrt[]{143}}{-11}=-\frac{\sqrt[]{143}}{11}](https://img.qammunity.org/2023/formulas/mathematics/college/bli9soumznnyveqapb59guiisat9h1vs8z.png)
Then, by applying the definition of the cotangent function:
![\cot \alpha\text{ =}\frac{\text{side adjacent to }\alpha}{side\text{ opposite to }\alpha}](https://img.qammunity.org/2023/formulas/mathematics/college/ekkpxfmcgi6vzdgtttpcwjn765onmt9j4v.png)
we have that
![\cot \theta=\frac{\sqrt[]{22}}{-11}](https://img.qammunity.org/2023/formulas/mathematics/college/6n8fqjhwoet3h0ye98gfklxpucnfpdrbbb.png)
We can simplify this result as follows
![\cot \theta=\frac{\sqrt[]{22}}{-11}=-\frac{\sqrt[]{2*11}}{11}=-\frac{\sqrt[]{2}}{\sqrt[]{11}}](https://img.qammunity.org/2023/formulas/mathematics/college/n1xreu5ty02l684xyfvrzjtb58gsupvjdw.png)
Therefore, the answer is:
![\cot \theta=-\frac{\sqrt[]{2}}{\sqrt[]{11}}](https://img.qammunity.org/2023/formulas/mathematics/college/tdnawdorx103j6b9wmyc3eymod8hx8g8zg.png)