The binomila probabiity formula is given by
![p(x)=(n!)/((n-x)!x!)p^xq^(n-x)](https://img.qammunity.org/2023/formulas/mathematics/college/wsaazjs20f32opgq2abl2whe7ther2jiq8.png)
Where
p is probability of success
x is the number of trials
q is the probability of failure
n is total number of trials
To calculate the probabilities, we will use a binomial calculator. Given, p = 0.5 and n = 14. So,
![P(x\geq10)=0.0898](https://img.qammunity.org/2023/formulas/mathematics/college/dkfj5hephtr4n057ekf2lirxehomx1vtya.png)
and
![P(x\leq12)=0.9991](https://img.qammunity.org/2023/formulas/mathematics/college/440cfvbrilguqw0esry5aosxsccive2fih.png)
and
![P(x=12)=0.0056](https://img.qammunity.org/2023/formulas/mathematics/college/x5gczsxth5ewj0efsalzghnomwqmfv9nez.png)
Now, the formula for the mean of a binomial distribution is
![\mu=np](https://img.qammunity.org/2023/formulas/mathematics/high-school/nzjnivb2z68d4k0k1sb8ak70aahjme7o6k.png)
Plugging in the values, it is:
![\begin{gathered} \mu=np \\ \mu=(14)(0.5) \\ \mu=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tbozdoyeww0pfk7132v82irf59trac1e5b.png)
The formula for standard deviation of a binomial distribution is
![\sigma=\sqrt[]{n\cdot p\cdot(1-p)}](https://img.qammunity.org/2023/formulas/mathematics/college/49fktk68tkbphsybhcvxs6uym8ryx7kcgs.png)
Plugging in the values, we have:
![\begin{gathered} \sigma=\sqrt[]{n\cdot p\cdot(1-p)} \\ \sigma=\sqrt[]{14\cdot0.5\cdot(1-0.5)} \\ \sigma=\sqrt[]{14\cdot0.5\cdot0.5} \\ \sigma=\sqrt[]{3.5} \\ \sigma=1.8708 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1gpe5j9xrko6xdb5xpgsqnnc8xq3vwrbtd.png)