The function is given as,
![E(x)\text{ = }2x^3-63x^2+624x\text{ + 816}](https://img.qammunity.org/2023/formulas/mathematics/college/6ja3v24tjzxojpvj7d28me8ibjyp7ibe5k.png)
Differentiating the given function w.r.t. x,
![E^(\prime)(x)=6x^2-126x+\text{ 624}](https://img.qammunity.org/2023/formulas/mathematics/college/r4jtyseorkrm0p0k6e3g1dmf8erdxocdmv.png)
Calculating the critical points,
![\begin{gathered} E^(\prime)(x)\text{ = 0} \\ 6x^2-126x+\text{ 624 = 0} \\ 3x^2-63x+312\text{ = 0} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8os9fq08oc8ysh6ulxc72mu775eaxtykiq.png)
Calculating the roots of the given quadratic equation,
![\begin{gathered} x\text{ = }\frac{-(-63)\pm\sqrt[]{(-63)^2-4*3*312}}{2*3} \\ x\text{ = }13\text{ and x = 8} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w6oya0gdws6q2ofjpsqgaf6mvd6s1pvtir.png)
The interval is given as,
![3\leq x\leq15](https://img.qammunity.org/2023/formulas/mathematics/college/ymabsdxb2xrdtsf9mqifsyslj757rkkcrl.png)
Minimum value at x = 3 is calculated as,
![\begin{gathered} E(3)\text{ = }2(3)^3-63(3)^2+624(3)\text{ + 816} \\ E(3)\text{ = }2*\text{ 8 - 63 }*\text{ 9 + 624}*3+816 \\ E(3)\text{ = }16\text{ - 567+1872 + 816} \\ E(x)\text{ = 2137} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/assf5d0qhqyxombr30pjzdsunaldwea9u1.png)
Minimum value at x = 8 is calculated as,
![\begin{gathered} E(8)\text{ = }2(8)^3-63(8)^2+624(8)\text{ + 816} \\ E(8)\text{ =}1024\text{ - 4032 + 4992 + 816} \\ E(8)\text{ = 2800} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2rpexsc3yzf03g31z2jotq2rpd6ifc70lw.png)
Maximum value at x = 15,
![\begin{gathered} E(15)\text{ = }2(15)^3-63(15)^2+624(15)\text{ + 816} \\ E(15)\text{ = }6750\text{ - 14175 + 9360 + 816} \\ E(15)\text{ =}2751 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9g0slywpgkv5ak4by7qswneitfrbznxnm0.png)
Maximum value at x = 13 is calculated as,
![\begin{gathered} E(13)\text{ = }2(13)^3-63(13)^2+624(13)\text{ + 816} \\ E(13)\text{ = }4394\text{ - 10647 + 8112 + 816 } \\ E(13)\text{ = }2675 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pekiupg4goys2lz7uxsgyh62m4m6z4161c.png)
Thus the required answer is,
![\begin{gathered} Absolute\text{ minimum : E(3) = 2137} \\ \text{Absolute max imum : E}(8)\text{ = 2800} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p3q0ul9iyc7bqjo6e2lobez11p5jx7zdgi.png)