Given:
![\begin{gathered} b=7 \\ c=3 \\ \angle A=41^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mn35ovvc7j6bh8isuebsj1935ky6v2p2fy.png)
To find: The missing sides and angles
Explantion:
The formula of cosine,
![a=\sqrt[]{b^2+c^2-2bc\cos A}](https://img.qammunity.org/2023/formulas/mathematics/college/7xnbkep3x12652wrj0g8xjrt1mq7q2ig18.png)
Substituting the given values we get,
![\begin{gathered} a=\sqrt[]{3^2+7^2-2(3)(7)\cos 41^(\circ)} \\ =\sqrt[]{9+49-42\cos41^(\circ)} \\ =\sqrt[]{26.3021} \\ =5.12857 \\ \approx5.1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fg6jody63dpev29dlhq5t0exsjfi94kgvc.png)
Thus, the missing side length is a = 5.1.
Using the sine formula,
![\begin{gathered} (\sin A)/(a)=(\sin B)/(b)=(\sin C)/(c) \\ (\sin41^(\circ))/(5.1)=(\sin B)/(3)=(\sin C)/(7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w915q6vaff4x7sk1ivxz1fvb0egss2vlrm.png)
Solving first two terms we get,
![\begin{gathered} (\sin41^(\circ))/(5.1)=(\sin B)/(3) \\ \sin B=(3\sin41^(\circ))/(5.1) \\ =\sin ^(-1)\mleft(0.39\mright) \\ =22.70 \\ B\approx23^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ke1oeggtd2vy7ikfnk1pjxlnceb3ln2b4o.png)
Thus, the measure of angle B is 23 degrees.
Using the angle sum property,
![\begin{gathered} A+B+C=180^(\circ) \\ 41+23+C=180 \\ C=180-64 \\ C=116^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tu9kzbszm9cjs1ezsqvzvahpli0llm7ziy.png)
Thus, the measure of angle C is 116 degrees.
Final answer: The missing angles and sides are,
![\begin{gathered} \angle B=23^(\circ) \\ \angle C=116^(\circ) \\ BC=a=5.1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kn7rxahp60jeho2rpajfuis709uccqmqau.png)